⚙️ API reference
polars-bio API is grouped into the following categories:
- File I/O: Reading files in various biological formats from local and cloud storage.
- Data Processing: Exposing end user to the rich SQL programming interface powered by Apache Datafusion for operations, such as sorting, filtering and other transformations on input bioinformatic datasets registered as tables. You can easily query and process file formats such as VCF, GFF, BAM, FASTQ using SQL syntax.
- Interval Operations: Functions for performing common interval operations, such as overlap, nearest, coverage.
There are 2 ways of using polars-bio API:
- using
polars_biomodule
Example
- directly on a Polars LazyFrame under a registered
pbnamespace
Example
Tip
- Not all are available in both ways.
- You can of course use both ways in the same script.
CoordinateSystemMismatchError
Bases: Exception
Raised when two DataFrames have different coordinate systems.
This error occurs when attempting range operations (overlap, nearest, etc.) on DataFrames where one uses 0-based coordinates and the other uses 1-based coordinates.
Example
Source code in polars_bio/exceptions.py
MissingCoordinateSystemError
Bases: Exception
Raised when a DataFrame lacks coordinate system metadata.
Range operations require coordinate system metadata to determine the correct interval semantics. This error is raised when:
- A Polars LazyFrame/DataFrame lacks polars-config-meta metadata
- A Pandas DataFrame lacks df.attrs["coordinate_system_zero_based"]
- A file path registers a table without Arrow schema metadata
For Polars DataFrames, use polars-bio I/O functions (scan_, read_) which automatically set the metadata.
For Pandas DataFrames, set the attribute before passing to range operations:
Example
import pandas as pd
import polars_bio as pb
pdf = pd.read_csv("intervals.bed", sep=" ", names=["chrom", "start", "end"])
pb.overlap(pdf, pdf) # Raises MissingCoordinateSystemError
# Fix: set the coordinate system metadata
pdf.attrs["coordinate_system_zero_based"] = True
pb.overlap(pdf, pdf) # Works correctly
Source code in polars_bio/exceptions.py
data_input
Source code in polars_bio/io.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 | |
describe_bam(path, sample_size=100, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', use_zero_based=None)
staticmethod
Get schema information for a BAM file with automatic tag discovery.
Samples the first N records to discover all available tags and their types. Returns detailed schema information including column names, data types, nullability, category (standard/tag), SAM type, and descriptions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the BAM file. |
required |
sample_size
|
int
|
Number of records to sample for tag discovery (default: 100). Use higher values for more comprehensive tag discovery. |
100
|
chunk_size
|
int
|
The size in MB of a chunk when reading from object storage. |
8
|
concurrent_fetches
|
int
|
The number of concurrent fetches when reading from object storage. |
1
|
allow_anonymous
|
bool
|
Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
Whether to enable request payer for object storage. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file. |
300
|
compression_type
|
str
|
The compression type of the file. If "auto" (default), compression is detected automatically. |
'auto'
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based coordinates. If False, 1-based coordinates. |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with columns: |
DataFrame
|
|
DataFrame
|
|
DataFrame
|
|
DataFrame
|
|
DataFrame
|
|
DataFrame
|
|
Example
import polars_bio as pb
# Auto-discover all tags present in the file
schema = pb.describe_bam("file.bam", sample_size=100)
print(schema)
# Output:
# shape: (15, 6)
# ┌─────────────┬───────────┬──────────┬──────────┬──────────┬──────────────────────┐
# │ column_name ┆ data_type ┆ nullable ┆ category ┆ sam_type ┆ description │
# │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
# │ str ┆ str ┆ bool ┆ str ┆ str ┆ str │
# ╞═════════════╪═══════════╪══════════╪══════════╪══════════╪══════════════════════╡
# │ name ┆ Utf8 ┆ true ┆ core ┆ null ┆ Query name │
# │ chrom ┆ Utf8 ┆ true ┆ core ┆ null ┆ Reference name │
# │ ... ┆ ... ┆ ... ┆ ... ┆ ... ┆ ... │
# │ NM ┆ Int32 ┆ true ┆ tag ┆ i ┆ Edit distance │
# │ AS ┆ Int32 ┆ true ┆ tag ┆ i ┆ Alignment score │
# └─────────────┴───────────┴──────────┴──────────┴──────────┴──────────────────────┘
Source code in polars_bio/io.py
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 | |
describe_cram(path, reference_path=None, sample_size=100, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', use_zero_based=None)
staticmethod
Get schema information for a CRAM file with automatic tag discovery.
Samples the first N records to discover all available tags and their types. Returns detailed schema information including column names, data types, nullability, category (core/tag), SAM type, and descriptions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the CRAM file. |
required |
reference_path
|
str
|
Optional path to external FASTA reference file. |
None
|
sample_size
|
int
|
Number of records to sample for tag discovery (default: 100). |
100
|
chunk_size
|
int
|
The size in MB of a chunk when reading from object storage. |
8
|
concurrent_fetches
|
int
|
The number of concurrent fetches when reading from object storage. |
1
|
allow_anonymous
|
bool
|
Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
Whether to enable request payer for object storage. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file. |
300
|
compression_type
|
str
|
The compression type of the file. If "auto" (default), compression is detected automatically. |
'auto'
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based coordinates. If False, 1-based coordinates. |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with columns: |
DataFrame
|
|
DataFrame
|
|
DataFrame
|
|
DataFrame
|
|
DataFrame
|
|
DataFrame
|
|
Known Limitation: MD and NM Tags
Due to a limitation in the underlying noodles-cram library, MD (mismatch descriptor) and NM (edit distance) tags are not discoverable from CRAM files, even when stored. Automatic tag discovery will not include MD/NM tags. Other optional tags (RG, MQ, AM, OQ, etc.) are discovered correctly. See: https://github.com/biodatageeks/datafusion-bio-formats/issues/54
Example
Source code in polars_bio/io.py
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 | |
describe_sam(path, sample_size=100, use_zero_based=None)
staticmethod
Get schema information for a SAM file with automatic tag discovery.
Samples the first N records to discover all available tags and their types. Reuses the BAM describe logic, which auto-detects SAM from the file extension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the SAM file. |
required |
sample_size
|
int
|
Number of records to sample for tag discovery (default: 100). |
100
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based coordinates. If False, 1-based coordinates. |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with columns: column_name, data_type, nullable, category, sam_type, description |
Source code in polars_bio/io.py
describe_vcf(path, allow_anonymous=True, enable_request_payer=False, compression_type='auto')
staticmethod
Describe VCF INFO schema.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the VCF file. |
required |
allow_anonymous
|
bool
|
Whether to allow anonymous access to object storage (GCS and S3 supported). |
True
|
enable_request_payer
|
bool
|
Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the VCF file. If not specified, it will be detected automatically.. |
'auto'
|
Source code in polars_bio/io.py
from_polars(name, df)
staticmethod
Register a Polars DataFrame as a DataFusion table.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
The name of the table. |
required |
df
|
Union[DataFrame, LazyFrame]
|
The Polars DataFrame. |
required |
Source code in polars_bio/io.py
read_bam(path, tag_fields=None, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, projection_pushdown=True, predicate_pushdown=True, use_zero_based=None)
staticmethod
Read a BAM file into a DataFrame.
Parallelism & Indexed Reads
Indexed parallel reads and predicate pushdown are automatic when a BAI/CSI index is present. See File formats support, Indexed reads, and Automatic parallel partitioning for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the BAM file. |
required |
tag_fields
|
Union[list[str], None]
|
List of BAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). Common tags include: NM (edit distance), MD (mismatch string), AS (alignment score), XS (secondary alignment score), RG (read group), CB (cell barcode), UB (UMI barcode). |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large-scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large-scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
predicate_pushdown
|
bool
|
Enable predicate pushdown using index files (BAI/CSI) for efficient region-based filtering. Index files are auto-discovered (e.g., |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Source code in polars_bio/io.py
read_bed(path, thread_num=1, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True, use_zero_based=None)
staticmethod
Read a BED file into a DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the BED file. |
required |
thread_num
|
int
|
The number of threads to use for reading the BED file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the BED file. If not specified, it will be detected automatically based on the file extension. BGZF compressions is supported ('bgz'). |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
Only BED4 format is supported. It extends the basic BED format (BED3) by adding a name field, resulting in four columns: chromosome, start position, end position, and name. Also unlike other text formats, GZIP compression is not supported.
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Source code in polars_bio/io.py
read_cram(path, reference_path=None, tag_fields=None, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, projection_pushdown=True, predicate_pushdown=True, use_zero_based=None)
staticmethod
Read a CRAM file into a DataFrame.
Parallelism & Indexed Reads
Indexed parallel reads and predicate pushdown are automatic when a CRAI index is present. See File formats support, Indexed reads, and Automatic parallel partitioning for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the CRAM file (local or cloud storage: S3, GCS, Azure Blob). |
required |
reference_path
|
str
|
Optional path to external FASTA reference file (local path only, cloud storage not supported). If not provided, the CRAM file must contain embedded reference sequences. The FASTA file must have an accompanying index file (.fai) in the same directory. Create the index using: |
None
|
tag_fields
|
Union[list[str], None]
|
List of CRAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). Common tags include: NM (edit distance), MD (mismatch string), AS (alignment score), XS (secondary alignment score), RG (read group), CB (cell barcode), UB (UMI barcode). |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
projection_pushdown
|
bool
|
Enable column projection pushdown optimization. When True, only requested columns are processed at the DataFusion execution level, improving performance and reducing memory usage. |
True
|
predicate_pushdown
|
bool
|
Enable predicate pushdown using index files (CRAI) for efficient region-based filtering. Index files are auto-discovered (e.g., |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Known Limitation: MD and NM Tags
Due to a limitation in the underlying noodles-cram library, MD (mismatch descriptor) and NM (edit distance) tags are not accessible from CRAM files, even when stored in the file. These tags can be seen with samtools but are not exposed through the noodles-cram record.data() interface.
Other optional tags (RG, MQ, AM, OQ, etc.) work correctly. This issue is tracked at: https://github.com/biodatageeks/datafusion-bio-formats/issues/54
Workaround: Use BAM format if MD/NM tags are required for your analysis.
Using External Reference
Public CRAM File Example
Download and read a public CRAM file from 42basepairs:
# Download the CRAM file and reference
wget https://42basepairs.com/download/s3/gatk-test-data/wgs_cram/NA12878_20k_hg38/NA12878.cram
wget https://storage.googleapis.com/genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta
# Create FASTA index (required)
samtools faidx Homo_sapiens_assembly38.fasta
Creating CRAM with Embedded Reference
To create a CRAM file with embedded reference using samtools:
Returns:
| Type | Description |
|---|---|
DataFrame
|
A Polars DataFrame with the following schema: - name: Read name (String) - chrom: Chromosome/contig name (String) - start: Alignment start position, 1-based (UInt32) - end: Alignment end position, 1-based (UInt32) - flags: SAM flags (UInt32) - cigar: CIGAR string (String) - mapping_quality: Mapping quality (UInt32) - mate_chrom: Mate chromosome/contig name (String) - mate_start: Mate alignment start position, 1-based (UInt32) - sequence: Read sequence (String) - quality_scores: Base quality scores (String) |
Source code in polars_bio/io.py
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | |
read_fasta(path, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True)
staticmethod
Read a FASTA file into a DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the FASTA file. |
required |
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the FASTA file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compressions are supported ('bgz', 'gz'). |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown optimization. When True, only requested columns are processed at the DataFusion execution level, improving performance and reducing memory usage. |
True
|
Example
shape: (1, 3)
┌─────────────────────────┬─────────────────────────────────┬─────────────────────────────────┐
│ name ┆ description ┆ sequence │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞═════════════════════════╪═════════════════════════════════╪═════════════════════════════════╡
│ ENA|BK006935|BK006935.2 ┆ TPA_inf: Saccharomyces cerevis… ┆ CCACACCACACCCACACACCCACACACCAC… │
└─────────────────────────┴─────────────────────────────────┴─────────────────────────────────┘
Source code in polars_bio/io.py
read_fastq(path, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True)
staticmethod
Read a FASTQ file into a DataFrame.
Parallelism & Compression
See File formats support, Compression, and Automatic parallel partitioning for details on parallel reads and supported compression types.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the FASTQ file. |
required |
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the FASTQ file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compressions are supported ('bgz', 'gz'). |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
Source code in polars_bio/io.py
read_gff(path, attr_fields=None, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True, predicate_pushdown=True, use_zero_based=None)
staticmethod
Read a GFF file into a DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the GFF file. |
required |
attr_fields
|
Union[list[str], None]
|
List of attribute field names to extract as separate columns. If None, attributes will be kept as a nested structure. Use this to extract specific attributes like 'ID', 'gene_name', 'gene_type', etc. as direct columns for easier access. |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the GFF file. If not specified, it will be detected automatically.. |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
predicate_pushdown
|
bool
|
Enable predicate pushdown using index files (TBI/CSI) for efficient region-based filtering. Index files are auto-discovered (e.g., |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Source code in polars_bio/io.py
read_sam(path, tag_fields=None, projection_pushdown=True, use_zero_based=None)
staticmethod
Read a SAM file into a DataFrame.
SAM (Sequence Alignment/Map) is the plain-text counterpart of BAM. This function reuses the BAM reader, which auto-detects the format from the file extension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the SAM file. |
required |
tag_fields
|
Union[list[str], None]
|
List of SAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). |
None
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance. |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration. |
None
|
Note
By default, coordinates are output in 1-based closed format.
Source code in polars_bio/io.py
read_table(path, schema=None, **kwargs)
staticmethod
Read a tab-delimited (i.e. BED) file into a Polars DataFrame. Tries to be compatible with Bioframe's read_table but faster. Schema should follow the Bioframe's schema format.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the file. |
required |
schema
|
Dict
|
Schema should follow the Bioframe's schema format. |
None
|
Source code in polars_bio/io.py
read_vcf(path, info_fields=None, format_fields=None, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True, predicate_pushdown=True, use_zero_based=None)
staticmethod
Read a VCF file into a DataFrame.
Parallelism & Indexed Reads
Indexed parallel reads and predicate pushdown are automatic when a TBI/CSI index is present. See File formats support, Indexed reads, and Automatic parallel partitioning for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the VCF file. |
required |
info_fields
|
Union[list[str], None]
|
List of INFO field names to include. If None, all INFO fields will be detected automatically from the VCF header. Use this to limit fields for better performance. |
None
|
format_fields
|
Union[list[str], None]
|
List of FORMAT field names to include (per-sample genotype data). If None, all FORMAT fields will be automatically detected from the VCF header. Column naming depends on the number of samples: for single-sample VCFs, columns are named directly by the FORMAT field (e.g., |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the VCF file. If not specified, it will be detected automatically.. |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
predicate_pushdown
|
bool
|
Enable predicate pushdown using index files (TBI/CSI) for efficient region-based filtering. Index files are auto-discovered (e.g., |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Reading VCF with INFO and FORMAT fields
import polars_bio as pb
# Read VCF with both INFO and FORMAT fields
df = pb.read_vcf(
"sample.vcf.gz",
info_fields=["END"], # INFO field
format_fields=["GT", "DP", "GQ"] # FORMAT fields
)
# Single-sample VCF: FORMAT columns named directly (GT, DP, GQ)
print(df.select(["chrom", "start", "ref", "alt", "END", "GT", "DP", "GQ"]))
# Output:
# shape: (10, 8)
# ┌───────┬───────┬─────┬─────┬──────┬─────┬─────┬─────┐
# │ chrom ┆ start ┆ ref ┆ alt ┆ END ┆ GT ┆ DP ┆ GQ │
# │ str ┆ u32 ┆ str ┆ str ┆ i32 ┆ str ┆ i32 ┆ i32 │
# ╞═══════╪═══════╪═════╪═════╪══════╪═════╪═════╪═════╡
# │ 1 ┆ 10009 ┆ A ┆ . ┆ null ┆ 0/0 ┆ 10 ┆ 27 │
# │ 1 ┆ 10015 ┆ A ┆ . ┆ null ┆ 0/0 ┆ 17 ┆ 35 │
# └───────┴───────┴─────┴─────┴──────┴─────┴─────┴─────┘
# Multi-sample VCF: FORMAT columns named {sample}_{field}
df = pb.read_vcf("multisample.vcf", format_fields=["GT", "DP"])
print(df.select(["chrom", "start", "NA12878_GT", "NA12878_DP", "NA12879_GT"]))
Source code in polars_bio/io.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | |
scan_bam(path, tag_fields=None, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, projection_pushdown=True, predicate_pushdown=True, use_zero_based=None)
staticmethod
Lazily read a BAM file into a LazyFrame.
Parallelism & Indexed Reads
Indexed parallel reads and predicate pushdown are automatic when a BAI/CSI index is present. See File formats support, Indexed reads, and Automatic parallel partitioning for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the BAM file. |
required |
tag_fields
|
Union[list[str], None]
|
List of BAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). Common tags include: NM (edit distance), MD (mismatch string), AS (alignment score), XS (secondary alignment score), RG (read group), CB (cell barcode), UB (UMI barcode). |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
predicate_pushdown
|
bool
|
Enable predicate pushdown using index files (BAI/CSI) for efficient region-based filtering. Index files are auto-discovered (e.g., |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Source code in polars_bio/io.py
scan_bed(path, thread_num=1, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True, use_zero_based=None)
staticmethod
Lazily read a BED file into a LazyFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the BED file. |
required |
thread_num
|
int
|
The number of threads to use for reading the BED file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the BED file. If not specified, it will be detected automatically based on the file extension. BGZF compressions is supported ('bgz'). |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
Only BED4 format is supported. It extends the basic BED format (BED3) by adding a name field, resulting in four columns: chromosome, start position, end position, and name. Also unlike other text formats, GZIP compression is not supported.
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Source code in polars_bio/io.py
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 | |
scan_cram(path, reference_path=None, tag_fields=None, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, projection_pushdown=True, predicate_pushdown=True, use_zero_based=None)
staticmethod
Lazily read a CRAM file into a LazyFrame.
Parallelism & Indexed Reads
Indexed parallel reads and predicate pushdown are automatic when a CRAI index is present. See File formats support, Indexed reads, and Automatic parallel partitioning for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the CRAM file (local or cloud storage: S3, GCS, Azure Blob). |
required |
reference_path
|
str
|
Optional path to external FASTA reference file (local path only, cloud storage not supported). If not provided, the CRAM file must contain embedded reference sequences. The FASTA file must have an accompanying index file (.fai) in the same directory. Create the index using: |
None
|
tag_fields
|
Union[list[str], None]
|
List of CRAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). Common tags include: NM (edit distance), MD (mismatch string), AS (alignment score), XS (secondary alignment score), RG (read group), CB (cell barcode), UB (UMI barcode). |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
projection_pushdown
|
bool
|
Enable column projection pushdown optimization. When True, only requested columns are processed at the DataFusion execution level, improving performance and reducing memory usage. |
True
|
predicate_pushdown
|
bool
|
Enable predicate pushdown using index files (CRAI) for efficient region-based filtering. Index files are auto-discovered (e.g., |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Known Limitation: MD and NM Tags
Due to a limitation in the underlying noodles-cram library, MD (mismatch descriptor) and NM (edit distance) tags are not accessible from CRAM files, even when stored in the file. These tags can be seen with samtools but are not exposed through the noodles-cram record.data() interface.
Other optional tags (RG, MQ, AM, OQ, etc.) work correctly. This issue is tracked at: https://github.com/biodatageeks/datafusion-bio-formats/issues/54
Workaround: Use BAM format if MD/NM tags are required for your analysis.
Using External Reference
Public CRAM File Example
Download and read a public CRAM file from 42basepairs:
# Download the CRAM file and reference
wget https://42basepairs.com/download/s3/gatk-test-data/wgs_cram/NA12878_20k_hg38/NA12878.cram
wget https://storage.googleapis.com/genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta
# Create FASTA index (required)
samtools faidx Homo_sapiens_assembly38.fasta
import polars_bio as pb
import polars as pl
# Lazy scan and filter for chromosome 20 reads
df = pb.scan_cram(
"NA12878.cram",
reference_path="Homo_sapiens_assembly38.fasta"
).filter(
pl.col("chrom") == "chr20"
).select(
["name", "chrom", "start", "end", "mapping_quality"]
).limit(10).collect()
print(df)
Creating CRAM with Embedded Reference
To create a CRAM file with embedded reference using samtools:
Returns:
| Type | Description |
|---|---|
LazyFrame
|
A Polars LazyFrame with the following schema: - name: Read name (String) - chrom: Chromosome/contig name (String) - start: Alignment start position, 1-based (UInt32) - end: Alignment end position, 1-based (UInt32) - flags: SAM flags (UInt32) - cigar: CIGAR string (String) - mapping_quality: Mapping quality (UInt32) - mate_chrom: Mate chromosome/contig name (String) - mate_start: Mate alignment start position, 1-based (UInt32) - sequence: Read sequence (String) - quality_scores: Base quality scores (String) |
Source code in polars_bio/io.py
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 | |
scan_fasta(path, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True)
staticmethod
Lazily read a FASTA file into a LazyFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the FASTA file. |
required |
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the FASTA file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compressions are supported ('bgz', 'gz'). |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
Example
shape: (1, 3)
┌─────────────────────────┬─────────────────────────────────┬─────────────────────────────────┐
│ name ┆ description ┆ sequence │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞═════════════════════════╪═════════════════════════════════╪═════════════════════════════════╡
│ ENA|BK006935|BK006935.2 ┆ TPA_inf: Saccharomyces cerevis… ┆ CCACACCACACCCACACACCCACACACCAC… │
└─────────────────────────┴─────────────────────────────────┴─────────────────────────────────┘
Source code in polars_bio/io.py
scan_fastq(path, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True)
staticmethod
Lazily read a FASTQ file into a LazyFrame.
Parallelism & Compression
See File formats support, Compression, and Automatic parallel partitioning for details on parallel reads and supported compression types.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the FASTQ file. |
required |
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the FASTQ file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compressions are supported ('bgz', 'gz'). |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
Source code in polars_bio/io.py
scan_gff(path, attr_fields=None, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True, predicate_pushdown=True, use_zero_based=None)
staticmethod
Lazily read a GFF file into a LazyFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the GFF file. |
required |
attr_fields
|
Union[list[str], None]
|
List of attribute field names to extract as separate columns. If None, attributes will be kept as a nested structure. Use this to extract specific attributes like 'ID', 'gene_name', 'gene_type', etc. as direct columns for easier access. |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large-scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the GFF file. If not specified, it will be detected automatically. |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
predicate_pushdown
|
bool
|
Enable predicate pushdown using index files (TBI/CSI) for efficient region-based filtering. Index files are auto-discovered (e.g., |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Source code in polars_bio/io.py
scan_sam(path, tag_fields=None, projection_pushdown=True, use_zero_based=None)
staticmethod
Lazily read a SAM file into a LazyFrame.
SAM (Sequence Alignment/Map) is the plain-text counterpart of BAM. This function reuses the BAM reader, which auto-detects the format from the file extension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the SAM file. |
required |
tag_fields
|
Union[list[str], None]
|
List of SAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). |
None
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance. |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration. |
None
|
Note
By default, coordinates are output in 1-based closed format.
Source code in polars_bio/io.py
scan_table(path, schema=None, **kwargs)
staticmethod
Lazily read a tab-delimited (i.e. BED) file into a Polars LazyFrame. Tries to be compatible with Bioframe's read_table but faster and lazy. Schema should follow the Bioframe's schema format.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the file. |
required |
schema
|
Dict
|
Schema should follow the Bioframe's schema format. |
None
|
Source code in polars_bio/io.py
scan_vcf(path, info_fields=None, format_fields=None, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', projection_pushdown=True, predicate_pushdown=True, use_zero_based=None)
staticmethod
Lazily read a VCF file into a LazyFrame.
Parallelism & Indexed Reads
Indexed parallel reads and predicate pushdown are automatic when a TBI/CSI index is present. See File formats support, Indexed reads, and Automatic parallel partitioning for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the VCF file. |
required |
info_fields
|
Union[list[str], None]
|
List of INFO field names to include. If None, all INFO fields will be detected automatically from the VCF header. Use this to limit fields for better performance. |
None
|
format_fields
|
Union[list[str], None]
|
List of FORMAT field names to include (per-sample genotype data). If None, all FORMAT fields will be automatically detected from the VCF header. Column naming depends on the number of samples: for single-sample VCFs, columns are named directly by the FORMAT field (e.g., |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the VCF file. If not specified, it will be detected automatically.. |
'auto'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
predicate_pushdown
|
bool
|
Enable predicate pushdown using index files (TBI/CSI) for efficient region-based filtering. Index files are auto-discovered (e.g., |
True
|
use_zero_based
|
Optional[bool]
|
If True, output 0-based half-open coordinates. If False, output 1-based closed coordinates. If None (default), uses the global configuration |
None
|
Note
By default, coordinates are output in 1-based closed format. Use use_zero_based=True or set pb.set_option(pb.POLARS_BIO_COORDINATE_SYSTEM_ZERO_BASED, True) for 0-based half-open coordinates.
Lazy scanning VCF with INFO and FORMAT fields
import polars_bio as pb
# Lazily scan VCF with both INFO and FORMAT fields
lf = pb.scan_vcf(
"sample.vcf.gz",
info_fields=["END"], # INFO field
format_fields=["GT", "DP", "GQ"] # FORMAT fields
)
# Apply filters and collect only what's needed
df = lf.filter(pl.col("DP") > 20).select(
["chrom", "start", "ref", "alt", "GT", "DP", "GQ"]
).collect()
# Single-sample VCF: FORMAT columns named directly (GT, DP, GQ)
# Multi-sample VCF: FORMAT columns named {sample}_{field}
Source code in polars_bio/io.py
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | |
sink_bam(lf, path, sort_on_write=False)
staticmethod
Streaming write a LazyFrame to BAM/SAM format.
For CRAM format, use sink_cram() instead.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lf
|
LazyFrame
|
LazyFrame to write |
required |
path
|
str
|
Output file path (.bam or .sam) |
required |
sort_on_write
|
bool
|
If True, sort records by (chrom, start) and set header SO:coordinate. If False (default), set header SO:unsorted. |
False
|
Streaming write BAM
Source code in polars_bio/io.py
sink_cram(lf, path, reference_path, sort_on_write=False)
staticmethod
Streaming write a LazyFrame to CRAM format.
CRAM uses reference-based compression, storing only differences from the reference sequence. This method streams data without materializing all rows in memory.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lf
|
LazyFrame
|
LazyFrame to write |
required |
path
|
str
|
Output CRAM file path |
required |
reference_path
|
str
|
Path to reference FASTA file (required). The reference must contain all sequences referenced by the alignment data. |
required |
sort_on_write
|
bool
|
If True, sort records by (chrom, start) and set header SO:coordinate. If False (default), set header SO:unsorted. |
False
|
Known Limitation: MD and NM Tags
Due to a limitation in the underlying noodles-cram library, MD and NM tags cannot be read back from CRAM files after writing, even though they are written to the file. If you need MD/NM tags for downstream analysis, use BAM format instead. Other optional tags (RG, MQ, AM, OQ, AS, etc.) work correctly. See: https://github.com/biodatageeks/datafusion-bio-formats/issues/54
Streaming write CRAM
import polars_bio as pb
import polars as pl
lf = pb.scan_bam("large_input.bam")
lf = lf.filter(pl.col("mapping_quality") > 30)
# Write CRAM with reference (required)
pb.sink_cram(lf, "filtered.cram", reference_path="reference.fasta")
# For sorted output
pb.sink_cram(lf, "filtered.cram", reference_path="reference.fasta", sort_on_write=True)
Source code in polars_bio/io.py
sink_fastq(lf, path)
staticmethod
Streaming write a LazyFrame to FASTQ format.
Compression is auto-detected from the file extension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lf
|
LazyFrame
|
The LazyFrame to write. |
required |
path
|
str
|
The output file path. Compression is auto-detected from extension (.fastq.bgz for BGZF, .fastq.gz for GZIP, .fastq for uncompressed). |
required |
Streaming write FASTQ
Source code in polars_bio/io.py
sink_sam(lf, path, sort_on_write=False)
staticmethod
Streaming write a LazyFrame to SAM format (plain text).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lf
|
LazyFrame
|
LazyFrame to write |
required |
path
|
str
|
Output file path (.sam) |
required |
sort_on_write
|
bool
|
If True, sort records by (chrom, start) and set header SO:coordinate. If False (default), set header SO:unsorted. |
False
|
Streaming write SAM
Source code in polars_bio/io.py
sink_vcf(lf, path)
staticmethod
Streaming write a LazyFrame to VCF format.
This method executes the LazyFrame immediately and writes the results
to the specified path. Unlike write_vcf, it doesn't return the row count.
Coordinate system is automatically read from LazyFrame metadata (set during scan_vcf). Compression is auto-detected from the file extension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lf
|
LazyFrame
|
The LazyFrame to write. |
required |
path
|
str
|
The output file path. Compression is auto-detected from extension (.vcf.bgz for BGZF, .vcf.gz for GZIP, .vcf for uncompressed). |
required |
Streaming write VCF
Source code in polars_bio/io.py
write_bam(df, path, sort_on_write=False)
staticmethod
Write a DataFrame to BAM/SAM format.
Compression is auto-detected from file extension: - .sam → Uncompressed SAM (plain text) - .bam → BGZF-compressed BAM
For CRAM format, use write_cram() instead.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Union[DataFrame, LazyFrame]
|
DataFrame or LazyFrame with 11 core BAM columns + optional tag columns |
required |
path
|
str
|
Output file path (.bam or .sam) |
required |
sort_on_write
|
bool
|
If True, sort records by (chrom, start) and set header SO:coordinate. If False (default), set header SO:unsorted. |
False
|
Returns:
| Type | Description |
|---|---|
int
|
Number of rows written |
Write BAM files
Source code in polars_bio/io.py
write_cram(df, path, reference_path, sort_on_write=False)
staticmethod
Write a DataFrame to CRAM format.
CRAM uses reference-based compression, storing only differences from the reference sequence. This achieves 30-60% better compression than BAM.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Union[DataFrame, LazyFrame]
|
DataFrame or LazyFrame with 11 core BAM columns + optional tag columns |
required |
path
|
str
|
Output CRAM file path |
required |
reference_path
|
str
|
Path to reference FASTA file (required). The reference must contain all sequences referenced by the alignment data. |
required |
sort_on_write
|
bool
|
If True, sort records by (chrom, start) and set header SO:coordinate. If False (default), set header SO:unsorted. |
False
|
Returns:
| Type | Description |
|---|---|
int
|
Number of rows written |
Known Limitation: MD and NM Tags
Due to a limitation in the underlying noodles-cram library, MD and NM tags cannot be read back from CRAM files after writing, even though they are written to the file. If you need MD/NM tags for downstream analysis, use BAM format instead. Other optional tags (RG, MQ, AM, OQ, AS, etc.) work correctly. See: https://github.com/biodatageeks/datafusion-bio-formats/issues/54
Write CRAM files
Source code in polars_bio/io.py
write_fastq(df, path)
staticmethod
Write a DataFrame to FASTQ format.
Compression is auto-detected from the file extension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Union[DataFrame, LazyFrame]
|
The DataFrame or LazyFrame to write. Must have columns: - name: Read name/identifier - sequence: DNA sequence - quality_scores: Quality scores string Optional: description (added after name on header line) |
required |
path
|
str
|
The output file path. Compression is auto-detected from extension (.fastq.bgz for BGZF, .fastq.gz for GZIP, .fastq for uncompressed). |
required |
Returns:
| Type | Description |
|---|---|
int
|
The number of rows written. |
Writing FASTQ files
Source code in polars_bio/io.py
write_sam(df, path, sort_on_write=False)
staticmethod
Write a DataFrame to SAM format (plain text).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Union[DataFrame, LazyFrame]
|
DataFrame or LazyFrame with 11 core BAM/SAM columns + optional tag columns |
required |
path
|
str
|
Output file path (.sam) |
required |
sort_on_write
|
bool
|
If True, sort records by (chrom, start) and set header SO:coordinate. If False (default), set header SO:unsorted. |
False
|
Returns:
| Type | Description |
|---|---|
int
|
Number of rows written |
Write SAM files
Source code in polars_bio/io.py
write_vcf(df, path)
staticmethod
Write a DataFrame to VCF format.
Coordinate system is automatically read from DataFrame metadata (set during read_vcf). Compression is auto-detected from the file extension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Union[DataFrame, LazyFrame]
|
The DataFrame or LazyFrame to write. |
required |
path
|
str
|
The output file path. Compression is auto-detected from extension (.vcf.bgz for BGZF, .vcf.gz for GZIP, .vcf for uncompressed). |
required |
Returns:
| Type | Description |
|---|---|
int
|
The number of rows written. |
Writing VCF files
Source code in polars_bio/io.py
data_processing
Source code in polars_bio/sql.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 | |
register_bam(path, name=None, tag_fields=None, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False)
staticmethod
Register a BAM file as a Datafusion table.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the BAM file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
tag_fields
|
Union[list[str], None]
|
List of BAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). Common tags include: NM (edit distance), MD (mismatch string), AS (alignment score), XS (secondary alignment score), RG (read group), CB (cell barcode), UB (UMI barcode). |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
BAM reader uses 1-based coordinate system for the start, end, mate_start, mate_end columns.
Example
Tip
chunk_size and concurrent_fetches can be adjusted according to the network bandwidth and the size of the BAM file. As a rule of thumb for large scale operations (reading a whole BAM), it is recommended keep the default values.
For more interactive inspecting a schema, it is recommended to decrease chunk_size to 8-16 and concurrent_fetches to 1-2.
Source code in polars_bio/sql.py
register_bed(path, name=None, thread_num=1, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False, compression_type='auto')
staticmethod
Register a BED file as a Datafusion table.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the BED file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
thread_num
|
int
|
The number of threads to use for reading the BED file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the BED file. If not specified, it will be detected automatically.. |
'auto'
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
Only BED4 format is supported. It extends the basic BED format (BED3) by adding a name field, resulting in four columns: chromosome, start position, end position, and name. Also unlike other text formats, GZIP compression is not supported.
Example
cd /tmp
wget https://webs.iiitd.edu.in/raghava/humcfs/fragile_site_bed.zip -O fragile_site_bed.zip
unzip fragile_site_bed.zip -x "__MACOSX/*" "*/.DS_Store"
import polars_bio as pb
pb.register_bed("/tmp/fragile_site_bed/chr5_fragile_site.bed", "test_bed")
b.sql("select * FROM test_bed WHERE name LIKE 'FRA5%'").collect()
shape: (8, 4)
┌───────┬───────────┬───────────┬───────┐
│ chrom ┆ start ┆ end ┆ name │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ u32 ┆ u32 ┆ str │
╞═══════╪═══════════╪═══════════╪═══════╡
│ chr5 ┆ 28900001 ┆ 42500000 ┆ FRA5A │
│ chr5 ┆ 92300001 ┆ 98200000 ┆ FRA5B │
│ chr5 ┆ 130600001 ┆ 136200000 ┆ FRA5C │
│ chr5 ┆ 92300001 ┆ 93916228 ┆ FRA5D │
│ chr5 ┆ 18400001 ┆ 28900000 ┆ FRA5E │
│ chr5 ┆ 98200001 ┆ 109600000 ┆ FRA5F │
│ chr5 ┆ 168500001 ┆ 180915260 ┆ FRA5G │
│ chr5 ┆ 50500001 ┆ 63000000 ┆ FRA5H │
└───────┴───────────┴───────────┴───────┘
Tip
chunk_size and concurrent_fetches can be adjusted according to the network bandwidth and the size of the BED file. As a rule of thumb for large scale operations (reading a whole BED), it is recommended to the default values.
Source code in polars_bio/sql.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | |
register_cram(path, name=None, tag_fields=None, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False)
staticmethod
Register a CRAM file as a Datafusion table.
Embedded Reference Required
Currently, only CRAM files with embedded reference sequences are supported. CRAM files requiring external reference FASTA files cannot be registered. Most modern CRAM files include embedded references by default.
To create a CRAM file with embedded reference using samtools:
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the CRAM file (local or cloud storage: S3, GCS, Azure Blob). |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
tag_fields
|
Union[list[str], None]
|
List of CRAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). Common tags include: NM (edit distance), MD (mismatch string), AS (alignment score), XS (secondary alignment score), RG (read group), CB (cell barcode), UB (UMI barcode). |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
CRAM reader uses 1-based coordinate system for the start, end, mate_start, mate_end columns.
Tip
chunk_size and concurrent_fetches can be adjusted according to the network bandwidth and the size of the CRAM file. As a rule of thumb for large scale operations (reading a whole CRAM), it is recommended to keep the default values.
For more interactive inspecting a schema, it is recommended to decrease chunk_size to 8-16 and concurrent_fetches to 1-2.
Source code in polars_bio/sql.py
register_fastq(path, name=None, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False, compression_type='auto', parallel=False)
staticmethod
Register a FASTQ file as a Datafusion table.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the FASTQ file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the FASTQ file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compression is supported ('bgz' and 'gz'). |
'auto'
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
parallel
|
bool
|
Whether to use the parallel reader for BGZF compressed files. Default is False. If a file ends with ".gz" but is actually BGZF, it will attempt the parallel path and fall back to standard if not BGZF. |
False
|
Example
import polars_bio as pb
pb.register_fastq("gs://genomics-public-data/platinum-genomes/fastq/ERR194146.fastq.gz", "test_fastq")
pb.sql("SELECT name, description FROM test_fastq WHERE name LIKE 'ERR194146%'").limit(5).collect()
shape: (5, 2)
┌─────────────────────┬─────────────────────────────────┐
│ name ┆ description │
│ --- ┆ --- │
│ str ┆ str │
╞═════════════════════╪═════════════════════════════════╡
│ ERR194146.812444541 ┆ HSQ1008:141:D0CC8ACXX:2:1204:1… │
│ ERR194146.812444542 ┆ HSQ1008:141:D0CC8ACXX:4:1206:1… │
│ ERR194146.812444543 ┆ HSQ1008:141:D0CC8ACXX:3:2104:5… │
│ ERR194146.812444544 ┆ HSQ1008:141:D0CC8ACXX:3:2204:1… │
│ ERR194146.812444545 ┆ HSQ1008:141:D0CC8ACXX:3:1304:3… │
└─────────────────────┴─────────────────────────────────┘
Tip
chunk_size and concurrent_fetches can be adjusted according to the network bandwidth and the size of the FASTQ file. As a rule of thumb for large scale operations (reading a whole FASTQ), it is recommended to the default values.
Source code in polars_bio/sql.py
register_gff(path, name=None, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False, compression_type='auto')
staticmethod
Register a GFF file as a Datafusion table.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the GFF file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the GFF file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compression is supported ('bgz' and 'gz'). |
'auto'
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
GFF reader uses 1-based coordinate system for the start and end columns.
Example
wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/gencode.v38.annotation.gff3.gz -O /tmp/gencode.v38.annotation.gff3.gz
Tip
chunk_size and concurrent_fetches can be adjusted according to the network bandwidth and the size of the GFF file. As a rule of thumb for large scale operations (reading a whole GFF), it is recommended to the default values.
Source code in polars_bio/sql.py
register_sam(path, name=None, tag_fields=None)
staticmethod
Register a SAM file as a Datafusion table.
SAM (Sequence Alignment/Map) is the plain-text counterpart of BAM. This function reuses the BAM table provider, which auto-detects the format from the file extension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the SAM file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name will be generated automatically from the path. |
None
|
tag_fields
|
Union[list[str], None]
|
List of SAM tag names to include as columns (e.g., ["NM", "MD", "AS"]). If None, no optional tags are parsed (default). |
None
|
Example
Source code in polars_bio/sql.py
register_vcf(path, name=None, info_fields=None, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False, compression_type='auto')
staticmethod
Register a VCF file as a Datafusion table.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
The path to the VCF file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
info_fields
|
Union[list[str], None]
|
List of INFO field names to register. If None, all INFO fields will be detected automatically from the VCF header. Use this to limit registration to specific fields for better performance. |
None
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the VCF file. If not specified, it will be detected automatically.. |
'auto'
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
VCF reader uses 1-based coordinate system for the start and end columns.
Example
Tip
chunk_size and concurrent_fetches can be adjusted according to the network bandwidth and the size of the VCF file. As a rule of thumb for large scale operations (reading a whole VCF), it is recommended to the default values.
Source code in polars_bio/sql.py
register_view(name, query)
staticmethod
Register a query as a Datafusion view. This view can be used in genomic ranges operations, such as overlap, nearest, and count_overlaps. It is useful for filtering, transforming, and aggregating data prior to the range operation. When combined with the range operation, it can be used to perform complex in a streaming fashion end-to-end.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
The name of the table. |
required |
query
|
str
|
The SQL query. |
required |
Example
import polars_bio as pb
pb.register_vcf("gs://gcp-public-data--gnomad/release/4.1/vcf/exomes/gnomad.exomes.v4.1.sites.chr21.vcf.bgz", "gnomad_sv")
pb.register_view("v_gnomad_sv", "SELECT replace(chrom,'chr', '') AS chrom, start, end FROM gnomad_sv")
pb.sql("SELECT * FROM v_gnomad_sv").limit(5).collect()
shape: (5, 3)
┌───────┬─────────┬─────────┐
│ chrom ┆ start ┆ end │
│ --- ┆ --- ┆ --- │
│ str ┆ u32 ┆ u32 │
╞═══════╪═════════╪═════════╡
│ 21 ┆ 5031905 ┆ 5031905 │
│ 21 ┆ 5031905 ┆ 5031905 │
│ 21 ┆ 5031909 ┆ 5031909 │
│ 21 ┆ 5031911 ┆ 5031911 │
│ 21 ┆ 5031911 ┆ 5031911 │
└───────┴─────────┴─────────┘
Source code in polars_bio/sql.py
sql(query)
staticmethod
Execute a SQL query on the registered tables.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str
|
The SQL query. |
required |
Example
Source code in polars_bio/sql.py
range_operations
Source code in polars_bio/range_op.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 | |
count_overlaps(df1, df2, suffixes=('', '_'), cols1=['chrom', 'start', 'end'], cols2=['chrom', 'start', 'end'], on_cols=None, output_type='polars.LazyFrame', naive_query=True, projection_pushdown=True)
staticmethod
Count pairs of overlapping genomic intervals. Bioframe inspired API.
The coordinate system (0-based or 1-based) is automatically detected from DataFrame metadata set at I/O time. Both inputs must have the same coordinate system.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df1
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table (see register_vcf). CSV with a header, BED and Parquet are supported. |
required |
df2
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table. CSV with a header, BED and Parquet are supported. |
required |
suffixes
|
tuple[str, str]
|
Suffixes for the columns of the two overlapped sets. |
('', '_')
|
cols1
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
cols2
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
on_cols
|
Union[list[str], None]
|
List of additional column names to join on. default is None. |
None
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
naive_query
|
bool
|
If True, use naive query for counting overlaps based on overlaps. |
True
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
Returns:
| Type | Description |
|---|---|
Union[LazyFrame, DataFrame, 'pd.DataFrame', DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Raises:
| Type | Description |
|---|---|
MissingCoordinateSystemError
|
If either input lacks coordinate system metadata
and |
CoordinateSystemMismatchError
|
If inputs have different coordinate systems. |
Example
import polars_bio as pb
import pandas as pd
df1 = pd.DataFrame([
['chr1', 1, 5],
['chr1', 3, 8],
['chr1', 8, 10],
['chr1', 12, 14]],
columns=['chrom', 'start', 'end']
)
df1.attrs["coordinate_system_zero_based"] = False # 1-based coordinates
df2 = pd.DataFrame(
[['chr1', 4, 8],
['chr1', 10, 11]],
columns=['chrom', 'start', 'end' ]
)
df2.attrs["coordinate_system_zero_based"] = False # 1-based coordinates
counts = pb.count_overlaps(df1, df2, output_type="pandas.DataFrame")
counts
chrom start end count
0 chr1 1 5 1
1 chr1 3 8 1
2 chr1 8 10 0
3 chr1 12 14 0
Todo
Support return_input.
Source code in polars_bio/range_op.py
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 | |
coverage(df1, df2, suffixes=('_1', '_2'), on_cols=None, cols1=['chrom', 'start', 'end'], cols2=['chrom', 'start', 'end'], output_type='polars.LazyFrame', read_options=None, projection_pushdown=True)
staticmethod
Calculate intervals coverage. Bioframe inspired API.
The coordinate system (0-based or 1-based) is automatically detected from DataFrame metadata set at I/O time. Both inputs must have the same coordinate system.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df1
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table (see register_vcf). CSV with a header, BED and Parquet are supported. |
required |
df2
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table. CSV with a header, BED and Parquet are supported. |
required |
cols1
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
cols2
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
suffixes
|
tuple[str, str]
|
Suffixes for the columns of the two overlapped sets. |
('_1', '_2')
|
on_cols
|
Union[list[str], None]
|
List of additional column names to join on. default is None. |
None
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
read_options
|
Union[ReadOptions, None]
|
Additional options for reading the input files. |
None
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
Returns:
| Type | Description |
|---|---|
Union[LazyFrame, DataFrame, 'pd.DataFrame', DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Raises:
| Type | Description |
|---|---|
MissingCoordinateSystemError
|
If either input lacks coordinate system metadata
and |
CoordinateSystemMismatchError
|
If inputs have different coordinate systems. |
Note
The default output format, i.e. LazyFrame, is recommended for large datasets as it supports output streaming and lazy evaluation. This enables efficient processing of large datasets without loading the entire output dataset into memory.
Example:
Todo
Support for on_cols.
Source code in polars_bio/range_op.py
merge(df, min_dist=0, cols=['chrom', 'start', 'end'], on_cols=None, output_type='polars.LazyFrame', projection_pushdown=True)
staticmethod
Merge overlapping intervals. It is assumed that start < end.
The coordinate system (0-based or 1-based) is automatically detected from DataFrame metadata set at I/O time.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame. CSV with a header, BED and Parquet are supported. |
required |
min_dist
|
float
|
Minimum distance between intervals to merge. Default is 0. |
0
|
cols
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
on_cols
|
Union[list[str], None]
|
List of additional column names for clustering. default is None. |
None
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
Returns:
| Type | Description |
|---|---|
Union[LazyFrame, DataFrame, 'pd.DataFrame', DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Raises:
| Type | Description |
|---|---|
MissingCoordinateSystemError
|
If input lacks coordinate system metadata
and |
Example:
Todo
Support for on_cols.
Source code in polars_bio/range_op.py
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 | |
nearest(df1, df2, suffixes=('_1', '_2'), on_cols=None, cols1=['chrom', 'start', 'end'], cols2=['chrom', 'start', 'end'], output_type='polars.LazyFrame', read_options=None, projection_pushdown=True)
staticmethod
Find pairs of closest genomic intervals. Bioframe inspired API.
The coordinate system (0-based or 1-based) is automatically detected from DataFrame metadata set at I/O time. Both inputs must have the same coordinate system.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df1
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table (see register_vcf). CSV with a header, BED and Parquet are supported. |
required |
df2
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table. CSV with a header, BED and Parquet are supported. |
required |
cols1
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
cols2
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
suffixes
|
tuple[str, str]
|
Suffixes for the columns of the two overlapped sets. |
('_1', '_2')
|
on_cols
|
Union[list[str], None]
|
List of additional column names to join on. default is None. |
None
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
read_options
|
Union[ReadOptions, None]
|
Additional options for reading the input files. |
None
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
Returns:
| Type | Description |
|---|---|
Union[LazyFrame, DataFrame, 'pd.DataFrame', DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Raises:
| Type | Description |
|---|---|
MissingCoordinateSystemError
|
If either input lacks coordinate system metadata
and |
CoordinateSystemMismatchError
|
If inputs have different coordinate systems. |
Note
The default output format, i.e. LazyFrame, is recommended for large datasets as it supports output streaming and lazy evaluation. This enables efficient processing of large datasets without loading the entire output dataset into memory.
Example:
Todo
Support for on_cols.
Source code in polars_bio/range_op.py
overlap(df1, df2, suffixes=('_1', '_2'), on_cols=None, cols1=['chrom', 'start', 'end'], cols2=['chrom', 'start', 'end'], algorithm='Coitrees', low_memory=False, output_type='polars.LazyFrame', read_options1=None, read_options2=None, projection_pushdown=True)
staticmethod
Find pairs of overlapping genomic intervals. Bioframe inspired API.
The coordinate system (0-based or 1-based) is automatically detected from DataFrame metadata set at I/O time. Both inputs must have the same coordinate system.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df1
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table (see register_vcf). CSV with a header, BED and Parquet are supported. |
required |
df2
|
Union[str, DataFrame, LazyFrame, 'pd.DataFrame']
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table. CSV with a header, BED and Parquet are supported. |
required |
cols1
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
cols2
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
suffixes
|
tuple[str, str]
|
Suffixes for the columns of the two overlapped sets. |
('_1', '_2')
|
on_cols
|
Union[list[str], None]
|
List of additional column names to join on. default is None. |
None
|
algorithm
|
str
|
The algorithm to use for the overlap operation. Available options: Coitrees, IntervalTree, ArrayIntervalTree, Lapper, SuperIntervals |
'Coitrees'
|
low_memory
|
bool
|
If True, use low memory method for output generation. This may be slower but uses less memory. |
False
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
read_options1
|
Union[ReadOptions, None]
|
Additional options for reading the input files. |
None
|
read_options2
|
Union[ReadOptions, None]
|
Additional options for reading the input files. |
None
|
projection_pushdown
|
bool
|
Enable column projection pushdown to optimize query performance by only reading the necessary columns at the DataFusion level. |
True
|
Returns:
| Type | Description |
|---|---|
Union[LazyFrame, DataFrame, 'pd.DataFrame', DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Raises:
| Type | Description |
|---|---|
MissingCoordinateSystemError
|
If either input lacks coordinate system metadata
and |
CoordinateSystemMismatchError
|
If inputs have different coordinate systems. |
Note
- The default output format, i.e. LazyFrame, is recommended for large datasets as it supports output streaming and lazy evaluation. This enables efficient processing of large datasets without loading the entire output dataset into memory.
- Streaming is only supported for polars.LazyFrame output.
Example
import polars_bio as pb
import pandas as pd
df1 = pd.DataFrame([
['chr1', 1, 5],
['chr1', 3, 8],
['chr1', 8, 10],
['chr1', 12, 14]],
columns=['chrom', 'start', 'end']
)
df1.attrs["coordinate_system_zero_based"] = False # 1-based coordinates
df2 = pd.DataFrame(
[['chr1', 4, 8],
['chr1', 10, 11]],
columns=['chrom', 'start', 'end' ]
)
df2.attrs["coordinate_system_zero_based"] = False # 1-based coordinates
overlapping_intervals = pb.overlap(df1, df2, output_type="pandas.DataFrame")
overlapping_intervals
chrom_1 start_1 end_1 chrom_2 start_2 end_2
0 chr1 1 5 chr1 4 8
1 chr1 3 8 chr1 4 8
Todo
Support for on_cols.
Source code in polars_bio/range_op.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | |
get_metadata(df)
Get all metadata attached to a DataFrame or LazyFrame.
Returns all metadata including: - Source file information (format, path) - Format-specific metadata (VCF INFO/FORMAT fields, FASTQ quality encoding, etc.) - Comprehensive Arrow schema metadata (if available)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Polars DataFrame or LazyFrame (or Pandas DataFrame) |
required |
Returns:
| Type | Description |
|---|---|
dict
|
Dict with keys: |
dict
|
|
dict
|
|
dict
|
|
dict
|
|
Examples:
Get all metadata from a VCF file:
Access basic metadata:
meta["format"] # Returns: 'vcf'
meta["path"] # Returns: 'file.vcf'
meta["coordinate_system_zero_based"] # Returns: False (1-based for VCF)
Access VCF-specific metadata:
info_fields = meta["header"]["info_fields"]
format_fields = meta["header"]["format_fields"]
sample_names = meta["header"]["sample_names"]
version = meta["header"]["version"]
contigs = meta["header"]["contigs"]
Source code in polars_bio/_metadata.py
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 | |
get_option(key)
Get the value of a configuration option.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
key
|
The configuration key. |
required |
Returns:
| Type | Description |
|---|---|
|
The current value of the option as a string, or None if not set. |
Source code in polars_bio/context.py
print_metadata_json(df, indent=2)
Print metadata as pretty-formatted JSON.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Union[DataFrame, LazyFrame]
|
Polars DataFrame or LazyFrame |
required |
indent
|
int
|
Number of spaces for indentation (default: 2) |
2
|
Source code in polars_bio/_metadata.py
print_metadata_summary(df)
Print a human-readable summary of all metadata.
Displays a formatted summary of all metadata attached to a DataFrame or LazyFrame, including format, path, coordinate system, and format-specific information.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Union[DataFrame, LazyFrame]
|
Polars DataFrame or LazyFrame |
required |
Source code in polars_bio/_metadata.py
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 | |
set_loglevel(level)
Set the log level for the logger and root logger.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
level
|
str
|
The log level to set. Can be "debug", "info", "warn", or "warning". |
required |
Note
The log level should be set as a first step after importing the library. Once set it can be only decreased, not increased. In order to increase the log level, you need to restart the Python session.
Example:
Source code in polars_bio/logging.py
set_option(key, value)
Set a configuration option.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
key
|
The configuration key. |
required | |
value
|
The value to set (bool values are converted to "true"/"false"). |
required |
Source code in polars_bio/context.py
set_source_metadata(df, format, path='', header=None)
Set standardized source file metadata.
Stores metadata about the source file format, path, and format-specific header information. This standardized approach works across all file formats (VCF, FASTQ, BAM, GFF, BED, FASTA, CRAM).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
Polars DataFrame or LazyFrame (or Pandas DataFrame) |
required | |
format
|
str
|
File format identifier (e.g., "vcf", "fastq", "bam") |
required |
path
|
str
|
Original file path (default: "") |
''
|
header
|
dict
|
Format-specific header data as dict (default: None) For VCF: {"info_fields": {...}, "format_fields": {...}, "sample_names": [...], ...} For other formats: format-specific metadata |
None
|