⚙️ API reference
polars-bio API is grouped into the following categories:
- File I/O: Reading files in various biological formats from local and cloud storage.
- Data Processing: Exposing end user to the rich SQL programming interface powered by Apache Datafusion for operations, such as sorting, filtering and other transformations on input bioinformatic datasets registered as tables. You can easily query and process file formats such as VCF, GFF, BAM, FASTQ using SQL syntax.
- Interval Operations: Functions for performing common interval operations, such as overlap, nearest, coverage.
There are 2 ways of using polars-bio API:
- using
polars_bio
module
Example
- directly on a Polars LazyFrame under a registered
pb
namespace
Example
Tip
- Not all are available in both ways.
- You can of course use both ways in the same script.
data_input
Source code in polars_bio/io.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
|
describe_vcf(path, allow_anonymous=True, enable_request_payer=False, compression_type='auto')
staticmethod
Describe VCF INFO schema.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the VCF file. |
required |
allow_anonymous
|
bool
|
Whether to allow anonymous access to object storage (GCS and S3 supported). |
True
|
enable_request_payer
|
bool
|
Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the VCF file. If not specified, it will be detected automatically based on the file extension. BGZF compression is supported ('bgz'). |
'auto'
|
Example
import polars_bio as pb
vcf_1 = "gs://gcp-public-data--gnomad/release/4.1/genome_sv/gnomad.v4.1.sv.sites.vcf.gz"
pb.describe_vcf(vcf_1, allow_anonymous=True).sort("name").limit(5)
shape: (5, 3)
┌───────────┬─────────┬──────────────────────────────────────────────────────────────────────────────────────┐
│ name ┆ type ┆ description │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞═══════════╪═════════╪══════════════════════════════════════════════════════════════════════════════════════╡
│ AC ┆ Integer ┆ Number of non-reference alleles observed (biallelic sites only). │
│ AC_XX ┆ Integer ┆ Number of non-reference XX alleles observed (biallelic sites only). │
│ AC_XY ┆ Integer ┆ Number of non-reference XY alleles observed (biallelic sites only). │
│ AC_afr ┆ Integer ┆ Number of non-reference African-American alleles observed (biallelic sites only). │
│ AC_afr_XX ┆ Integer ┆ Number of non-reference African-American XX alleles observed (biallelic sites only). │
└───────────┴─────────┴──────────────────────────────────────────────────────────────────────────────────────┘
Source code in polars_bio/io.py
from_polars(name, df)
staticmethod
Register a Polars DataFrame as a DataFusion table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the table. |
required |
df
|
Union[DataFrame, LazyFrame]
|
The Polars DataFrame. |
required |
Example
Source code in polars_bio/io.py
read_bam(path, thread_num=1, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, streaming=False)
staticmethod
Read a BAM file into a LazyFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the BAM file. |
required |
thread_num
|
int
|
The number of threads to use for reading the BAM file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
streaming
|
bool
|
Whether to read the BAM file in streaming mode. |
False
|
Example
import polars_bio as pb
bam = pb.read_bam("gs://genomics-public-data/1000-genomes/bam/HG00096.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam").limit(3)
bam.collect()
INFO:polars_bio:Table: hg00096_mapped_illumina_bwa_gbr_low_coverage_20120522 registered for path: gs://genomics-public-data/1000-genomes/bam/HG00096.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
shape: (3, 11)
┌────────────────────┬───────┬───────┬───────┬───┬────────────┬────────────┬─────────────────────────────────┬─────────────────────────────────┐
│ name ┆ chrom ┆ start ┆ end ┆ … ┆ mate_chrom ┆ mate_start ┆ sequence ┆ quality_scores │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ u32 ┆ u32 ┆ ┆ str ┆ u32 ┆ str ┆ str │
╞════════════════════╪═══════╪═══════╪═══════╪═══╪════════════╪════════════╪═════════════════════════════════╪═════════════════════════════════╡
│ SRR062634.9882510 ┆ chr1 ┆ 10001 ┆ 10044 ┆ … ┆ chr1 ┆ 10069 ┆ TAACCCTAACCCTACCCTAACCCTAACCCT… ┆ 0<>=/0E:7;08FBDIF9;2%=<>+FCDDA… │
│ SRR062641.21956756 ┆ chr1 ┆ 10001 ┆ 10049 ┆ … ┆ chr1 ┆ 10051 ┆ TAACCCTACCCTAACCCTAACCCTAACCCT… ┆ 0=MLOOPNNPPJHPOQQROQPQQRIQPRJB… │
│ SRR062641.13613107 ┆ chr1 ┆ 10002 ┆ 10072 ┆ … ┆ chr1 ┆ 10110 ┆ AACCCTAACCCCTAACCCCTAACCCCTAAC… ┆ 0KKNPQOQOQIQRPQPRRRRPQPRRRRPRF… │
└────────────────────┴───────┴───────┴───────┴───┴────────────┴────────────┴─────────────────────────────────┴─────────────────────────────────┘
Note
BAM reader uses 1-based coordinate system for the start
, end
, mate_start
, mate_end
columns.
Source code in polars_bio/io.py
read_bed(path, thread_num=1, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', streaming=False)
staticmethod
Read a BED file into a LazyFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the BED file. |
required |
thread_num
|
int
|
The number of threads to use for reading the BED file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the BED file. If not specified, it will be detected automatically based on the file extension. BGZF compressions is supported ('bgz'). |
'auto'
|
streaming
|
bool
|
Whether to read the BED file in streaming mode. |
False
|
Note
Only BED4 format is supported. It extends the basic BED format (BED3) by adding a name field, resulting in four columns: chromosome, start position, end position, and name. Also unlike other text formats, GZIP compression is not supported.
Example
cd /tmp
wget https://webs.iiitd.edu.in/raghava/humcfs/fragile_site_bed.zip -O fragile_site_bed.zip
unzip fragile_site_bed.zip -x "__MACOSX/*" "*/.DS_Store"
import polars_bio as pb
pb.read_bed("/tmp/fragile_site_bed/chr5_fragile_site.bed").limit(5).collect()
shape: (5, 4)
┌───────┬───────────┬───────────┬───────┐
│ chrom ┆ start ┆ end ┆ name │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ u32 ┆ u32 ┆ str │
╞═══════╪═══════════╪═══════════╪═══════╡
│ chr5 ┆ 28900001 ┆ 42500000 ┆ FRA5A │
│ chr5 ┆ 92300001 ┆ 98200000 ┆ FRA5B │
│ chr5 ┆ 130600001 ┆ 136200000 ┆ FRA5C │
│ chr5 ┆ 92300001 ┆ 93916228 ┆ FRA5D │
│ chr5 ┆ 18400001 ┆ 28900000 ┆ FRA5E │
└───────┴───────────┴───────────┴───────┘
Note
BED reader uses 1-based coordinate system for the start
, end
.
Source code in polars_bio/io.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
|
read_fastq(path, thread_num=1, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', streaming=False)
staticmethod
Read a FASTQ file into a LazyFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the FASTQ file. |
required |
thread_num
|
int
|
The number of threads to use for reading the FASTQ file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the FASTQ file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compressions are supported ('bgz', 'gz'). |
'auto'
|
streaming
|
bool
|
Whether to read the FASTQ file in streaming mode. |
False
|
Example
import polars_bio as pb
pb.read_fastq("gs://genomics-public-data/platinum-genomes/fastq/ERR194146.fastq.gz").limit(1).collect()
shape: (1, 4)
┌─────────────────────┬─────────────────────────────────┬─────────────────────────────────┬─────────────────────────────────┐
│ name ┆ description ┆ sequence ┆ quality_scores │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str │
╞═════════════════════╪═════════════════════════════════╪═════════════════════════════════╪═════════════════════════════════╡
│ ERR194146.812444541 ┆ HSQ1008:141:D0CC8ACXX:2:1204:1… ┆ TGGAAGGTTCTCGAAAAAAATGGAATCGAA… ┆ ?@;DDBDDBHF??FFB@B)1:CD3*:?DFF… │
└─────────────────────┴─────────────────────────────────┴─────────────────────────────────┴─────────────────────────────────┘
Source code in polars_bio/io.py
read_gff(path, attr_fields=None, thread_num=1, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', streaming=False)
staticmethod
Read a GFF file into a LazyFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the GFF file. |
required |
attr_fields
|
Union[list[str], None]
|
The fields to unnest from the |
None
|
thread_num
|
int
|
The number of threads to use for reading the GFF file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the GFF file. If not specified, it will be detected automatically based on the file extension. BGZF compression is supported ('bgz'). |
'auto'
|
streaming
|
bool
|
Whether to read the GFF file in streaming mode. |
False
|
Example
wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/gencode.v38.annotation.gff3.gz -O /tmp/gencode.v38.annotation.gff3.gz
import polars_bio as pb
gff_path = "/tmp/gencode.v38.annotation.gff3.gz"
pb.read_gff(gff_path).limit(5).collect()
shape: (5, 9)
┌───────┬───────┬───────┬────────────┬───┬───────┬────────┬───────┬─────────────────────────────────┐
│ chrom ┆ start ┆ end ┆ type ┆ … ┆ score ┆ strand ┆ phase ┆ attributes │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ u32 ┆ u32 ┆ str ┆ ┆ f32 ┆ str ┆ u32 ┆ list[struct[2]] │
╞═══════╪═══════╪═══════╪════════════╪═══╪═══════╪════════╪═══════╪═════════════════════════════════╡
│ chr1 ┆ 11869 ┆ 14409 ┆ gene ┆ … ┆ null ┆ + ┆ null ┆ [{"ID","ENSG00000223972.5"}, {… │
│ chr1 ┆ 11869 ┆ 14409 ┆ transcript ┆ … ┆ null ┆ + ┆ null ┆ [{"ID","ENST00000456328.2"}, {… │
│ chr1 ┆ 11869 ┆ 12227 ┆ exon ┆ … ┆ null ┆ + ┆ null ┆ [{"ID","exon:ENST00000456328.2… │
│ chr1 ┆ 12613 ┆ 12721 ┆ exon ┆ … ┆ null ┆ + ┆ null ┆ [{"ID","exon:ENST00000456328.2… │
│ chr1 ┆ 13221 ┆ 14409 ┆ exon ┆ … ┆ null ┆ + ┆ null ┆ [{"ID","exon:ENST00000456328.2… │
└───────┴───────┴───────┴────────────┴───┴───────┴────────┴───────┴─────────────────────────────────┘
Read a GFF file with unnesting attributes:
import polars_bio as pb
gff_path = "/tmp/gencode.v38.annotation.gff3.gz"
pb.read_gff(gff_path, attr_fields=["ID", "havana_transcript"]).limit(5).collect()
shape: (5, 10)
┌───────┬───────┬───────┬────────────┬───┬────────┬───────┬──────────────────────────┬──────────────────────┐
│ chrom ┆ start ┆ end ┆ type ┆ … ┆ strand ┆ phase ┆ ID ┆ havana_transcript │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ u32 ┆ u32 ┆ str ┆ ┆ str ┆ u32 ┆ str ┆ str │
╞═══════╪═══════╪═══════╪════════════╪═══╪════════╪═══════╪══════════════════════════╪══════════════════════╡
│ chr1 ┆ 11869 ┆ 14409 ┆ gene ┆ … ┆ + ┆ null ┆ ENSG00000223972.5 ┆ null │
│ chr1 ┆ 11869 ┆ 14409 ┆ transcript ┆ … ┆ + ┆ null ┆ ENST00000456328.2 ┆ OTTHUMT00000362751.1 │
│ chr1 ┆ 11869 ┆ 12227 ┆ exon ┆ … ┆ + ┆ null ┆ exon:ENST00000456328.2:1 ┆ OTTHUMT00000362751.1 │
│ chr1 ┆ 12613 ┆ 12721 ┆ exon ┆ … ┆ + ┆ null ┆ exon:ENST00000456328.2:2 ┆ OTTHUMT00000362751.1 │
│ chr1 ┆ 13221 ┆ 14409 ┆ exon ┆ … ┆ + ┆ null ┆ exon:ENST00000456328.2:3 ┆ OTTHUMT00000362751.1 │
└───────┴───────┴───────┴────────────┴───┴────────┴───────┴──────────────────────────┴──────────────────────┘
Note
GFF reader uses 1-based coordinate system for the start
and end
columns.
Source code in polars_bio/io.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|
read_table(path, schema=None, **kwargs)
staticmethod
Read a tab-delimited (i.e. BED) file into a Polars LazyFrame. Tries to be compatible with Bioframe's read_table but faster and lazy. Schema should follow the Bioframe's schema format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the file. |
required |
schema
|
Dict
|
Schema should follow the Bioframe's schema format. |
None
|
Source code in polars_bio/io.py
read_vcf(path, info_fields=None, thread_num=1, chunk_size=8, concurrent_fetches=1, allow_anonymous=True, enable_request_payer=False, max_retries=5, timeout=300, compression_type='auto', streaming=False)
staticmethod
Read a VCF file into a LazyFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the VCF file. |
required |
info_fields
|
Union[list[str], None]
|
The fields to read from the INFO column. |
None
|
thread_num
|
int
|
The number of threads to use for reading the VCF file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. The default is 8 MB. For large scale operations, it is recommended to increase this value to 64. |
8
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. The default is 1. For large scale operations, it is recommended to increase this value to 8 or even more. |
1
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
compression_type
|
str
|
The compression type of the VCF file. If not specified, it will be detected automatically based on the file extension. BGZF compression is supported ('bgz'). |
'auto'
|
streaming
|
bool
|
Whether to read the VCF file in streaming mode. |
False
|
Note
VCF reader uses 1-based coordinate system for the start
and end
columns.
Source code in polars_bio/io.py
data_processing
Source code in polars_bio/sql.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
register_bam(path, name=None, thread_num=1, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False)
staticmethod
Register a BAM file as a Datafusion table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the BAM file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
thread_num
|
int
|
The number of threads to use for reading the BAM file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
BAM reader uses 1-based coordinate system for the start
, end
, mate_start
, mate_end
columns.
Example
Tip
chunk_size
and concurrent_fetches
can be adjusted according to the network bandwidth and the size of the BAM file. As a rule of thumb for large scale operations (reading a whole BAM), it is recommended keep the default values.
For more interactive inspecting a schema, it is recommended to decrease chunk_size
to 8-16 and concurrent_fetches
to 1-2.
Source code in polars_bio/sql.py
register_bed(path, name=None, thread_num=1, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False, compression_type='auto')
staticmethod
Register a BED file as a Datafusion table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the BED file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
thread_num
|
int
|
The number of threads to use for reading the BED file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the BED file. If not specified, it will be detected automatically based on the file extension. BGZF compression is supported ('bgz'). |
'auto'
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
Only BED4 format is supported. It extends the basic BED format (BED3) by adding a name field, resulting in four columns: chromosome, start position, end position, and name. Also unlike other text formats, GZIP compression is not supported.
Example
cd /tmp
wget https://webs.iiitd.edu.in/raghava/humcfs/fragile_site_bed.zip -O fragile_site_bed.zip
unzip fragile_site_bed.zip -x "__MACOSX/*" "*/.DS_Store"
import polars_bio as pb
pb.register_bed("/tmp/fragile_site_bed/chr5_fragile_site.bed", "test_bed")
b.sql("select * FROM test_bed WHERE name LIKE 'FRA5%'").collect()
shape: (8, 4)
┌───────┬───────────┬───────────┬───────┐
│ chrom ┆ start ┆ end ┆ name │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ u32 ┆ u32 ┆ str │
╞═══════╪═══════════╪═══════════╪═══════╡
│ chr5 ┆ 28900001 ┆ 42500000 ┆ FRA5A │
│ chr5 ┆ 92300001 ┆ 98200000 ┆ FRA5B │
│ chr5 ┆ 130600001 ┆ 136200000 ┆ FRA5C │
│ chr5 ┆ 92300001 ┆ 93916228 ┆ FRA5D │
│ chr5 ┆ 18400001 ┆ 28900000 ┆ FRA5E │
│ chr5 ┆ 98200001 ┆ 109600000 ┆ FRA5F │
│ chr5 ┆ 168500001 ┆ 180915260 ┆ FRA5G │
│ chr5 ┆ 50500001 ┆ 63000000 ┆ FRA5H │
└───────┴───────────┴───────────┴───────┘
Tip
chunk_size
and concurrent_fetches
can be adjusted according to the network bandwidth and the size of the BED file. As a rule of thumb for large scale operations (reading a whole BED), it is recommended to the default values.
Source code in polars_bio/sql.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
|
register_fastq(path, name=None, thread_num=1, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False, compression_type='auto')
staticmethod
Register a FASTQ file as a Datafusion table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the FASTQ file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
thread_num
|
int
|
The number of threads to use for reading the FASTQ file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the FASTQ file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compression is supported ('bgz' and 'gz'). |
'auto'
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Example
import polars_bio as pb
pb.register_fastq("gs://genomics-public-data/platinum-genomes/fastq/ERR194146.fastq.gz", "test_fastq")
pb.sql("SELECT name, description FROM test_fastq WHERE name LIKE 'ERR194146%'").limit(5).collect()
shape: (5, 2)
┌─────────────────────┬─────────────────────────────────┐
│ name ┆ description │
│ --- ┆ --- │
│ str ┆ str │
╞═════════════════════╪═════════════════════════════════╡
│ ERR194146.812444541 ┆ HSQ1008:141:D0CC8ACXX:2:1204:1… │
│ ERR194146.812444542 ┆ HSQ1008:141:D0CC8ACXX:4:1206:1… │
│ ERR194146.812444543 ┆ HSQ1008:141:D0CC8ACXX:3:2104:5… │
│ ERR194146.812444544 ┆ HSQ1008:141:D0CC8ACXX:3:2204:1… │
│ ERR194146.812444545 ┆ HSQ1008:141:D0CC8ACXX:3:1304:3… │
└─────────────────────┴─────────────────────────────────┘
Tip
chunk_size
and concurrent_fetches
can be adjusted according to the network bandwidth and the size of the FASTQ file. As a rule of thumb for large scale operations (reading a whole FASTQ), it is recommended to the default values.
Source code in polars_bio/sql.py
register_gff(path, name=None, attr_fields=None, thread_num=1, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False, compression_type='auto')
staticmethod
Register a GFF file as a Datafusion table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the GFF file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
attr_fields
|
Union[list[str], None]
|
The fields to unnest from the |
None
|
thread_num
|
int
|
The number of threads to use for reading the GFF file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the GFF file. If not specified, it will be detected automatically based on the file extension. BGZF and GZIP compression is supported ('bgz' and 'gz'). |
'auto'
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
GFF reader uses 1-based coordinate system for the start
and end
columns.
Example
wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/gencode.v38.annotation.gff3.gz -O /tmp/gencode.v38.annotation.gff3.gz
Tip
chunk_size
and concurrent_fetches
can be adjusted according to the network bandwidth and the size of the GFF file. As a rule of thumb for large scale operations (reading a whole GFF), it is recommended to the default values.
Source code in polars_bio/sql.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
register_vcf(path, name=None, info_fields=None, thread_num=1, chunk_size=64, concurrent_fetches=8, allow_anonymous=True, max_retries=5, timeout=300, enable_request_payer=False, compression_type='auto')
staticmethod
Register a VCF file as a Datafusion table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path to the VCF file. |
required |
name
|
Union[str, None]
|
The name of the table. If None, the name of the table will be generated automatically based on the path. |
None
|
info_fields
|
Union[list[str], None]
|
The fields to read from the INFO column. |
None
|
thread_num
|
int
|
The number of threads to use for reading the VCF file. Used only for parallel decompression of BGZF blocks. Works only for local files. |
1
|
chunk_size
|
int
|
The size in MB of a chunk when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 8-16. |
64
|
concurrent_fetches
|
int
|
[GCS] The number of concurrent fetches when reading from an object store. Default settings are optimized for large scale operations. For small scale (interactive) operations, it is recommended to decrease this value to 1-2. |
8
|
allow_anonymous
|
bool
|
[GCS, AWS S3] Whether to allow anonymous access to object storage. |
True
|
enable_request_payer
|
bool
|
[AWS S3] Whether to enable request payer for object storage. This is useful for reading files from AWS S3 buckets that require request payer. |
False
|
compression_type
|
str
|
The compression type of the VCF file. If not specified, it will be detected automatically based on the file extension. BGZF compression is supported ('bgz'). |
'auto'
|
max_retries
|
int
|
The maximum number of retries for reading the file from object storage. |
5
|
timeout
|
int
|
The timeout in seconds for reading the file from object storage. |
300
|
Note
VCF reader uses 1-based coordinate system for the start
and end
columns.
Example
Tip
chunk_size
and concurrent_fetches
can be adjusted according to the network bandwidth and the size of the VCF file. As a rule of thumb for large scale operations (reading a whole VCF), it is recommended to the default values.
Source code in polars_bio/sql.py
register_view(name, query)
staticmethod
Register a query as a Datafusion view. This view can be used in genomic ranges operations, such as overlap, nearest, and count_overlaps. It is useful for filtering, transforming, and aggregating data prior to the range operation. When combined with the range operation, it can be used to perform complex in a streaming fashion end-to-end.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the table. |
required |
query
|
str
|
The SQL query. |
required |
Example
import polars_bio as pb
pb.register_vcf("gs://gcp-public-data--gnomad/release/4.1/vcf/exomes/gnomad.exomes.v4.1.sites.chr21.vcf.bgz", "gnomad_sv")
pb.register_view("v_gnomad_sv", "SELECT replace(chrom,'chr', '') AS chrom, start, end FROM gnomad_sv")
pb.sql("SELECT * FROM v_gnomad_sv").limit(5).collect()
shape: (5, 3)
┌───────┬─────────┬─────────┐
│ chrom ┆ start ┆ end │
│ --- ┆ --- ┆ --- │
│ str ┆ u32 ┆ u32 │
╞═══════╪═════════╪═════════╡
│ 21 ┆ 5031905 ┆ 5031905 │
│ 21 ┆ 5031905 ┆ 5031905 │
│ 21 ┆ 5031909 ┆ 5031909 │
│ 21 ┆ 5031911 ┆ 5031911 │
│ 21 ┆ 5031911 ┆ 5031911 │
└───────┴─────────┴─────────┘
Source code in polars_bio/sql.py
sql(query, streaming=False)
staticmethod
Execute a SQL query on the registered tables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
The SQL query. |
required |
streaming
|
bool
|
Whether to execute the query in streaming mode. |
False
|
Example
Source code in polars_bio/sql.py
range_operations
Source code in polars_bio/range_op.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
|
count_overlaps(df1, df2, use_zero_based=False, suffixes=('', '_'), cols1=['chrom', 'start', 'end'], cols2=['chrom', 'start', 'end'], on_cols=None, output_type='polars.LazyFrame', streaming=False, naive_query=True)
staticmethod
Count pairs of overlapping genomic intervals. Bioframe inspired API.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df1
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table (see register_vcf). CSV with a header, BED and Parquet are supported. |
required |
df2
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table. CSV with a header, BED and Parquet are supported. |
required |
use_zero_based
|
bool
|
By default 1-based coordinates system is used, as all input file readers use 1-based coordinates. If enabled, 0-based is used instead and end user is responsible for ensuring that both datasets follow this coordinates system. |
False
|
suffixes
|
tuple[str, str]
|
Suffixes for the columns of the two overlapped sets. |
('', '_')
|
cols1
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
cols2
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
on_cols
|
Union[list[str], None]
|
List of additional column names to join on. default is None. |
None
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
naive_query
|
bool
|
If True, use naive query for counting overlaps based on overlaps. |
True
|
streaming
|
bool
|
EXPERIMENTAL If True, use Polars streaming engine. |
False
|
Returns: polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals.
Example
import polars_bio as pb
import pandas as pd
df1 = pd.DataFrame([
['chr1', 1, 5],
['chr1', 3, 8],
['chr1', 8, 10],
['chr1', 12, 14]],
columns=['chrom', 'start', 'end']
)
df2 = pd.DataFrame(
[['chr1', 4, 8],
['chr1', 10, 11]],
columns=['chrom', 'start', 'end' ]
)
counts = pb.count_overlaps(df1, df2, output_type="pandas.DataFrame")
counts
chrom start end count
0 chr1 1 5 1
1 chr1 3 8 1
2 chr1 8 10 0
3 chr1 12 14 0
Todo
Support return_input.
Source code in polars_bio/range_op.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
|
coverage(df1, df2, use_zero_based=False, suffixes=('_1', '_2'), on_cols=None, cols1=['chrom', 'start', 'end'], cols2=['chrom', 'start', 'end'], output_type='polars.LazyFrame', streaming=False, read_options=None)
staticmethod
Calculate intervals coverage. Bioframe inspired API.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df1
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table (see register_vcf). CSV with a header, BED and Parquet are supported. |
required |
df2
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table. CSV with a header, BED and Parquet are supported. |
required |
use_zero_based
|
bool
|
By default 1-based coordinates system is used, as all input file readers use 1-based coordinates. If enabled, 0-based is used instead and end user is responsible for ensuring that both datasets follow this coordinates system. |
False
|
cols1
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
cols2
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
suffixes
|
tuple[str, str]
|
Suffixes for the columns of the two overlapped sets. |
('_1', '_2')
|
on_cols
|
Union[list[str], None]
|
List of additional column names to join on. default is None. |
None
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
streaming
|
bool
|
EXPERIMENTAL If True, use Polars streaming engine. |
False
|
read_options
|
Union[ReadOptions, None]
|
Additional options for reading the input files. |
None
|
Returns:
Type | Description |
---|---|
Union[LazyFrame, DataFrame, DataFrame, DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Note
The default output format, i.e. LazyFrame, is recommended for large datasets as it supports output streaming and lazy evaluation. This enables efficient processing of large datasets without loading the entire output dataset into memory.
Example:
Todo
Support for on_cols.
Source code in polars_bio/range_op.py
merge(df, use_zero_based=False, min_dist=0, cols=['chrom', 'start', 'end'], on_cols=None, output_type='polars.LazyFrame', streaming=False)
staticmethod
Merge overlapping intervals. It is assumed that start < end.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame. CSV with a header, BED and Parquet are supported. |
required |
use_zero_based
|
bool
|
By default 1-based coordinates system is used, as all input file readers use 1-based coordinates. If enabled, 0-based is used instead and end user is responsible for ensuring that both datasets follow this coordinates system. |
False
|
cols
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
on_cols
|
Union[list[str], None]
|
List of additional column names for clustering. default is None. |
None
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
streaming
|
bool
|
EXPERIMENTAL If True, use Polars streaming engine. |
False
|
Returns:
Type | Description |
---|---|
Union[LazyFrame, DataFrame, DataFrame, DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Example:
Todo
Support for on_cols.
Source code in polars_bio/range_op.py
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
|
nearest(df1, df2, use_zero_based=False, suffixes=('_1', '_2'), on_cols=None, cols1=['chrom', 'start', 'end'], cols2=['chrom', 'start', 'end'], output_type='polars.LazyFrame', streaming=False, read_options=None)
staticmethod
Find pairs of closest genomic intervals. Bioframe inspired API.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df1
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table (see register_vcf). CSV with a header, BED and Parquet are supported. |
required |
df2
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table. CSV with a header, BED and Parquet are supported. |
required |
use_zero_based
|
bool
|
By default 1-based coordinates system is used, as all input file readers use 1-based coordinates. If enabled, 0-based is used instead and end user is responsible for ensuring that both datasets follow this coordinates system. |
False
|
cols1
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
cols2
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
suffixes
|
tuple[str, str]
|
Suffixes for the columns of the two overlapped sets. |
('_1', '_2')
|
on_cols
|
Union[list[str], None]
|
List of additional column names to join on. default is None. |
None
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
streaming
|
bool
|
EXPERIMENTAL If True, use Polars streaming engine. |
False
|
read_options
|
Union[ReadOptions, None]
|
Additional options for reading the input files. |
None
|
Returns:
Type | Description |
---|---|
Union[LazyFrame, DataFrame, DataFrame, DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Note
The default output format, i.e. LazyFrame, is recommended for large datasets as it supports output streaming and lazy evaluation. This enables efficient processing of large datasets without loading the entire output dataset into memory.
Example:
Todo
Support for on_cols.
Source code in polars_bio/range_op.py
overlap(df1, df2, use_zero_based=False, suffixes=('_1', '_2'), on_cols=None, cols1=['chrom', 'start', 'end'], cols2=['chrom', 'start', 'end'], algorithm='Coitrees', output_type='polars.LazyFrame', streaming=False, read_options1=None, read_options2=None)
staticmethod
Find pairs of overlapping genomic intervals. Bioframe inspired API.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df1
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table (see register_vcf). CSV with a header, BED and Parquet are supported. |
required |
df2
|
Union[str, DataFrame, LazyFrame, DataFrame]
|
Can be a path to a file, a polars DataFrame, or a pandas DataFrame or a registered table. CSV with a header, BED and Parquet are supported. |
required |
use_zero_based
|
bool
|
By default 1-based coordinates system is used, as all input file readers use 1-based coordinates. If enabled, 0-based is used instead and end user is responsible for ensuring that both datasets follow this coordinates system. |
False
|
cols1
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
cols2
|
Union[list[str], None]
|
The names of columns containing the chromosome, start and end of the genomic intervals, provided separately for each set. |
['chrom', 'start', 'end']
|
suffixes
|
tuple[str, str]
|
Suffixes for the columns of the two overlapped sets. |
('_1', '_2')
|
on_cols
|
Union[list[str], None]
|
List of additional column names to join on. default is None. |
None
|
algorithm
|
str
|
The algorithm to use for the overlap operation. Available options: Coitrees, IntervalTree, ArrayIntervalTree, Lapper |
'Coitrees'
|
output_type
|
str
|
Type of the output. default is "polars.LazyFrame", "polars.DataFrame", or "pandas.DataFrame" or "datafusion.DataFrame" are also supported. |
'polars.LazyFrame'
|
streaming
|
bool
|
EXPERIMENTAL If True, use Polars streaming engine. |
False
|
read_options1
|
Union[ReadOptions, None]
|
Additional options for reading the input files. |
None
|
read_options2
|
Union[ReadOptions, None]
|
Additional options for reading the input files. |
None
|
Returns:
Type | Description |
---|---|
Union[LazyFrame, DataFrame, DataFrame, DataFrame]
|
polars.LazyFrame or polars.DataFrame or pandas.DataFrame of the overlapping intervals. |
Note
- The default output format, i.e. LazyFrame, is recommended for large datasets as it supports output streaming and lazy evaluation. This enables efficient processing of large datasets without loading the entire output dataset into memory.
- Streaming is only supported for polars.LazyFrame output.
Example
import polars_bio as pb
import pandas as pd
df1 = pd.DataFrame([
['chr1', 1, 5],
['chr1', 3, 8],
['chr1', 8, 10],
['chr1', 12, 14]],
columns=['chrom', 'start', 'end']
)
df2 = pd.DataFrame(
[['chr1', 4, 8],
['chr1', 10, 11]],
columns=['chrom', 'start', 'end' ]
)
overlapping_intervals = pb.overlap(df1, df2, output_type="pandas.DataFrame")
overlapping_intervals
chrom_1 start_1 end_1 chrom_2 start_2 end_2
0 chr1 1 5 chr1 4 8
1 chr1 3 8 chr1 4 8
Todo
Support for on_cols.
Source code in polars_bio/range_op.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
utils
Source code in polars_bio/range_utils.py
visualize_intervals(df, label='overlapping pair')
staticmethod
Visualize the overlapping intervals.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
Union[DataFrame, DataFrame]
|
Pandas DataFrame or Polars DataFrame. The DataFrame containing the overlapping intervals |
required |
label
|
str
|
TBD |
'overlapping pair'
|
Source code in polars_bio/range_utils.py
set_loglevel(level)
Set the log level for the logger and root logger.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
level
|
str
|
The log level to set. Can be "debug", "info", "warn", or "warning". |
required |
Note
Please note that the log level should be set as a first step after importing the library. Once set it can be only decreased, not increased. In order to increase the log level, you need to restart the Python session.